View publication

In this paper, we address the task of determining whether a given utterance is directed towards a voice-enabled smart-assistant device or not. An undirected utterance is termed as a "false trigger" and false trigger mitigation (FTM) is essential for designing a privacy-centric non-intrusive smart assistant. The directedness of an utterance can be identified by running automatic speech recognition (ASR) on it and determining the user intent by analyzing the ASR transcript. But in case of a false trigger, transcribing the audio using ASR itself is strongly undesirable. To alleviate this issue, we propose an LSTM-based FTM architecture which determines the user intent from acoustic features directly without explicitly generating ASR transcripts from the audio. The proposed models are small footprint and can be run on-device with limited computational resources. During training, the model parameters are optimized using a knowledge transfer approach where a more accurate self-attention graph neural network model serves as the teacher. Given the whole audio snippets, our approach mitigates 87% of false triggers at 99% true positive rate (TPR), and in a streaming audio scenario, the system listens to only 1.69s of the false trigger audio before rejecting it while achieving the same TPR.

Related readings and updates.

We present a unified and hardware efficient architecture for two stage voice trigger detection (VTD) and false trigger mitigation (FTM) tasks. Two stage VTD systems of voice assistants can get falsely activated to audio segments acoustically similar to the trigger phrase of interest. FTM systems cancel such activations by using post trigger audio context. Traditional FTM systems rely on automatic speech recognition lattices which are…
Read more
Voice-triggered smart assistants often rely on detection of a trigger-phrase before they start listening for the user request. Mitigation of false triggers is an important aspect of building a privacy-centric non-intrusive smart assistant. In this paper, we address the task of false trigger mitigation (FTM) using a novel approach based on analyzing automatic speech recognition (ASR) lattices using graph neural networks (GNN). The proposed…
Read more