No Need to Talk: Asynchronous Mixture of Language Models
AuthorsAnastasiia Filippova, Angelos Katharopoulos, David Grangier, Ronan Collobert
AuthorsAnastasiia Filippova, Angelos Katharopoulos, David Grangier, Ronan Collobert
We introduce SmallTalk LM, an innovative method for training a mixture of language models in an almost asynchronous manner. Each model of the mixture specializes in distinct parts of the data distribution, without the need of high-bandwidth communication between the nodes training each model. At inference, a lightweight router directs a given sequence to a single expert, according to a short prefix. This inference scheme naturally uses a fraction of the parameters from the overall mixture model. Our experiments on language modeling demonstrate that SmallTalk LM achieves significantly lower perplexity than dense model baselines for the same total training FLOPs and an almost identical inference cost. Finally, in our downstream evaluations we outperform the dense baseline on 75% of the tasks.
July 17, 2024research area Methods and Algorithms, research area Speech and Natural Language ProcessingWorkshop at ICML
August 9, 2018research area Speech and Natural Language Processing
The accuracy of automatic speech recognition (ASR) systems has improved phenomenally over recent years, due to the widespread adoption of deep learning techniques. Performance improvements have, however, mainly been made in the recognition of general speech; whereas accurately recognizing named entities, like small local businesses, has remained a performance bottleneck. This article describes how we met that challenge, improving Siri’s ability to recognize names of local POIs by incorporating knowledge of the user’s location into our speech recognition system. Customized language models that take the user's location into account are known as geolocation-based language models (Geo-LMs). These models enable Siri to better estimate the user’s intended sequence of words by using not only the information provided by the acoustic model and a general LM (like in standard ASR) but also information about the POIs in the user’s surroundings.