View publication

This paper was accepted at the Foundation Models in the Wild workshop at ICML 2024.

Diffusion models have become the de-facto approach for generating visual data, which are trained to match the distribution of the training dataset. In addition, we also want to control generation to fulfill desired properties such as alignment to a text description, which can be specified with a black-box reward function. Prior works fine-tune pretrained diffusion models to achieve this goal through reinforcement learning-based algorithms. Nonetheless, they suffer from issues including slow credit assignment as well as low quality in their generated samples. In this work, we explore techniques that do not directly maximize the reward but rather generate high-reward images with relatively high probability — a natural scenario for the framework of generative flow networks (GFlowNets). To this end, we propose the Diffusion Alignment with GFlowNet (DAG) algorithm to post-train diffusion models with black-box property functions. Extensive experiments on Stable Diffusion and various reward specifications corroborate that our method could effectively align large-scale text-to-image diffusion models with given reward information.

Related readings and updates.

Diffusion Language Models (DLMs) have emerged as a promising new paradigm for text generative modeling, potentially addressing limitations of autoregressive (AR) models. However, current DLMs have been studied at a smaller scale compared to their AR counterparts and lack fair comparison on language modeling benchmarks. Additionally, training diffusion models from scratch at scale remains challenging. Given the prevalence of open-source AR…
Read more
Diffusion models have demonstrated excellent potential for generating diverse images. However, their performance often suffers from slow generation due to iterative denoising. Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few without significant quality degradation. However, existing distillation methods either require significant amounts of offline computation for…
Read more