View publication

High-quality automatic speech recognition (ASR) is essential for virtual assistants (VAs) to work well. However, ASR often performs poorly on VA requests containing named entities. In this work, we start from the observation that many ASR errors on named entities are inconsistent with real-world knowledge. We extend previous discriminative n-gram language modeling approaches to incorporate real-world knowledge from a Knowledge Graph (KG), using features that capture entity type-entity and entity-entity relationships. We apply our model through an efficient lattice rescoring process, achieving relative sentence error rate reductions of more than 25% on some synthesized test sets covering less popular entities, with minimal degradation on a uniformly sampled VA test set.

Related readings and updates.

Entity disambiguation (ED), which links the mentions of ambiguous entities to their referent entities in a knowledge base, serves as a core component in entity linking (EL). Existing generative approaches demonstrate improved accuracy compared to classification approaches under the standardized ZELDA benchmark. Nevertheless, generative approaches suffer from the need for large-scale pre-training and inefficient generation. Most importantly…
Read more
We focus on improving the effectiveness of a Virtual Assistant (VA) in recognizing emerging entities in spoken queries. We introduce a method that uses historical user interactions to forecast which entities will gain in popularity and become trending, and it subsequently integrates the predictions within the Automated Speech Recognition (ASR) component of the VA. Experiments show that our proposed approach results in a 20% relative reduction in…
Read more