View publication

Quantization, knowledge distillation, and magnitude pruning are among the most popular methods for neural network compression in NLP. Independently, these methods reduce model size and can accelerate inference, but their relative benefit and combinatorial inter- actions have not been rigorously studied. For each of the eight possible subsets of these techniques, we compare accuracy vs. model size tradeoffs across six BERT architecture sizes and eight GLUE tasks. We find that quantization and distillation consistently provide greater benefit than pruning. Surprisingly, except for the pair of pruning and quantization, using multiple methods together rarely yields diminishing returns. Instead, we observe complementary and super-multiplicative reductions to model size. Our work quantitatively demonstrates that combining compression methods can synergistically reduce model size, and that practitioners should prioritize (1) quantization, (2) knowledge distillation, and (3) pruning to maximize accuracy vs. model size tradeoffs.

*=Equal Contributions

Related readings and updates.

This paper was accepted at the Efficient Natural Language and Speech Processing (ENLSP-III) Workshop at NeurIPS. Large, pre-trained models are problematic to use in resource constrained applications. Fortunately, task-aware structured pruning methods offer a solution. These approaches reduce model size by dropping structural units like layers and attention heads in a manner that takes into account the end-task. However, these pruning algorithms…
Read more
Modern neural networks are growing not only in size and complexity but also in inference time. One of the most effective compression techniques -- channel pruning -- combats this trend by removing channels from convolutional weights to reduce resource consumption. However, removing channels is non-trivial for multi-branch segments of a model, which can introduce extra memory copies at inference time. These copies incur increase latency -- so much…
Read more