This paper proposes a novel acoustic word embedding called Acoustic Neighbor Embeddings where speech or text of arbitrary length are mapped to a vector space of fixed, reduced dimensions by adapting stochastic neighbor embedding (SNE) to sequential inputs. The Euclidean distance between coordinates in the embedding space reflects the phonetic confusability between their corresponding sequences. Two encoder neural networks are trained: an acoustic encoder that accepts speech signals in the form of frame-wise subword posterior probabilities obtained from an acoustic model and a text encoder that accepts text in the form of subword transcriptions. Compared to a known method based on a triplet loss, the proposed method is shown to have more effective gradients for neural network training. Experimentally, it also gives more accurate results when the two encoder networks are used in tandem in a word (name) recognition task, and when the text encoder network is used standalone in an approximate phonetic match task. In particular, in an isolated name recognition task depending solely on Euclidean nearest-neighbor search between the proposed embedding vectors, the recognition accuracy is identical to that of conventional finite state transducer(FST)-based decoding using test data with up to 1 million names in the vocabulary and 40 dimensions in the embeddings.
Related readings and updates.
Flexible Keyword Spotting based on Homogeneous Audio-Text Embedding
January 29, 2024research area Methods and Algorithms, research area Speech and Natural Language Processing
Improvements to Embedding-Matching Acoustic-to-Word ASR Using Multiple-Hypothesis Pronunciation-Based Embeddings
March 13, 2023research area Speech and Natural Language Processingconference ICASSP